Granular Semantic User Similarity in the Presence of Sparse Data
نویسندگان
چکیده
Finding similar users in social communities is often challenging, especially in the presence of sparse data or when working with heterogeneous or specialized domains. When computing semantic similarity among users it is desirable to have a measure which allows to compare users w.r.t. any concept in the domain. We propose such a technique which reduces the problems caused by data sparsity, especially in the cold start phase, and enables granular and contextbased adaptive suggestions. It allows referring to a certain set of most similar users in relation to a particular concept when a user needs suggestions about a certain topic (e.g. cultural events) and to a possibly completely different set when the user is interested in another topic (e.g. sport events). Our approach first uses a variation of the spreading activation technique to propagate the users’ interests on their corresponding ontology-based user models, and then computes the concept-biased cosine similarity (CBC similarity), a variation of the cosine similarity designed for privileging a particular concept in an ontology. CBC similarity can be used in many adaptation techniques to improve suggestions to users. We include an empirical evaluation on a collaborative filtering algorithm, showing that the CBC similarity works better than the cosine similarity when dealing with sparse data.
منابع مشابه
Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملA NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM
Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...
متن کاملQuery expansion based on relevance feedback and latent semantic analysis
Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کامل